# MATH 2028 Honours Advanced Calculus II <br> 2023-24 Term 1 <br> Problem Set 5 <br> due on Oct 20, 2023 (Friday) at 11:59PM 

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

## Problems to hand in

1. Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$ and the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1$.
2. Let $\Omega \subset \mathbb{R}^{2}$ be the open subset in the first quadrant bounded by $y=0, y=x, x y=1$ and $x^{2}-y^{2}=1$. Evaluate the integral $\int_{\Omega}\left(x^{2}+y^{2}\right) d A$ using the change of variables $u=x y$, $v=x^{2}-y^{2}$.
3. Let $B^{n}(r)$ denote the closed ball of radius $a$ in $\mathbb{R}^{n}$ centered at the origin.
(a) Show that $\operatorname{Vol}\left(B^{n}(r)\right)=\lambda_{n} r^{n}$ for some positive constant $\lambda_{n}$.
(b) Compute $\lambda_{1}$ and $\lambda_{2}$.
(c) Compute $\lambda_{n}$ in terms of $\lambda_{n-2}$.
(d) Deduce a formula for $\lambda_{n}$ for general $n$. (Hint: consider two cases, according to whether $n$ is even or odd.)

## Suggested Exercises

1. Let $\Omega \subset \mathbb{R}^{3}$ be the open subset

$$
\Omega=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}<a^{2}, z>0\right\}
$$

Evaluate the integral $\int_{\Omega} z d V$ using spherical coordinates. Justify your answer carefully.
2. Let $\Omega \subset \mathbb{R}^{2}$ be the open subset lying in the first quadrant and bounded by the hyperbolas $x y=1$, $x y=2$ and the lines $y=x, y=4 x$. Evaluate the integral $\int_{\Omega} x^{2} y^{3} d A$.
3. Let $\Omega \subset \mathbb{R}^{3}$ be the open tetrahedron with vertices $(0,0,0),(1,2,3),(0,1,2)$ and $(-1,1,1)$. Evaluate the integral $\int_{\Omega}(x+2 y-z) d V$.
4. Let $\Omega \subset \mathbb{R}^{2}$ be the open subset bounded by $x=0, y=0$ and $x+y=1$. Evaluate the integral $\int_{\Omega} \cos \left(\frac{x-y}{x+y}\right) d A$. (Hint: note that the integrand is un-defined at the origin.)
5. Let $\Omega \subset \mathbb{R}^{2}$ be the open subset bounded by the curve $x^{2}-x y+2 y^{2}=1$. Express the integral $\int_{\Omega} x y d A$ as an integral over the unit disk in $\mathbb{R}^{2}$ centered at the origin.
6. Find the volume of the solid region $\Omega \subset \mathbb{R}^{3}$ bounded below by the surface $z=x^{2}+2 y^{2}$ and above by the plane $z=2 x+6 y+1$ by expressing it as an integral over the unit disk in $\mathbb{R}^{2}$ centered at the origin.
7. Let $\Omega \subset \mathbb{R}^{2}$ be the open triangle with vertices $(0,0),(1,0)$ and $(0,1)$. Evaluate the integral $\int_{\Omega} e^{(x-y) /(x+y)} d A$
(a) using polar coordinates;
(b) using the change of variables $u=x-y, v=x+y$.

## Challenging Exercises

1. (a) Let $g: A \rightarrow \mathbb{R}^{n}$ be a $C^{1}$ map from an open subset $A \subset \mathbb{R}^{n}$. Denote the set

$$
S=\{x \in A \mid \operatorname{det} D g(x)=0\}
$$

Prove that $g(S)$ has measure zero in $\mathbb{R}^{n}$.
(b) Use (a) to prove that the change of variables theorem still holds even if $g$ is only a $C^{1}$ bijective map.

